Inhibiting translesion DNA synthesis as an approach to combat drug resistance to DNA damaging agents
نویسندگان
چکیده
Anti-cancer agents exert therapeutic effects by damaging DNA. Unfortunately, DNA polymerases can effectively replicate the formed DNA lesions to cause drug resistance and create more aggressive cancers. To understand this process at the cellular level, we developed an artificial nucleoside that visualizes the replication of damaged DNA to identify cells that acquire drug resistance through this mechanism. Visualization is achieved using "click" chemistry to covalently attach azide-containing fluorophores to the ethynyl group present on the nucleoside analog after its incorporation opposite damaged DNA. Flow cytometry and microscopy techniques demonstrate that the extent of nucleotide incorporation into genomic DNA is enhanced by treatment with DNA damaging agents. In addition, this nucleoside analog inhibits translesion DNA synthesis and synergizes the therapeutic activity of certain anti-cancer agents such as temozolomide. The combined diagnostic and therapeutic activities of this synthetic nucleoside analog represent a new paradigm in personalized medicine.
منابع مشابه
Inhibition of mutagenic translesion synthesis: A possible strategy for improving chemotherapy?
DNA damaging chemotherapy is the first line of treatment for certain cancers, but its longterm success is often marred by the eventual acquisition of chemoresistance. Other cancers cannot be treated because they are intrinsically resistant to such chemotherapy. These 2 types of resistance are coupled in the context of translesion synthesis (TLS), which is carried out by specialized TLS DNA poly...
متن کاملRoles of Arabidopsis AtREV1 and AtREV7 in translesion synthesis.
Plants have mechanisms for repairing and tolerating detrimental effects by various DNA damaging agents. A tolerance pathway that has been predicted to be present in higher plants is translesion synthesis (TLS), which is catalyzed by polymerases. In Arabidopsis (Arabidopsis thaliana), however, the only gene known to be involved in TLS is the Arabidopsis homolog of REV3, AtREV3, which is a putati...
متن کاملStructural basis of human DNA polymerase η-mediated chemoresistance to cisplatin.
Cisplatin (cis-diamminedichloroplatinum) and related compounds cause DNA damage and are widely used as anticancer agents. Chemoresistance to cisplatin treatment is due in part to translesion synthesis by human DNA polymerase η (hPol η). Here, we report crystal structures of hPol η complexed with intrastrand cisplatin-1,2-cross-linked DNA, representing four consecutive steps in translesion synth...
متن کاملError-prone translesion synthesis mediates acquired chemoresistance.
The development of cancer drug resistance is a persistent clinical problem limiting the successful treatment of disseminated malignancies. However, the molecular mechanisms by which initially chemoresponsive tumors develop therapeutic resistance remain poorly understood. Error-prone translesional DNA synthesis (TLS) is known to underlie the mutagenic effects of numerous anticancer agents, but l...
متن کاملInhibiting DNA Polymerases as a Therapeutic Intervention against Cancer
Inhibiting DNA synthesis is an important therapeutic strategy that is widely used to treat a number of hyperproliferative diseases including viral infections, autoimmune disorders, and cancer. This chapter describes two major categories of therapeutic agents used to inhibit DNA synthesis. The first category includes purine and pyrmidine nucleoside analogs that directly inhibit DNA polymerase ac...
متن کامل